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Higher-order dynamics in lattice-based models using the Chapman-Enskog method
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In this paper, we investigate the existence of higher-order dynamics in lattice-based models. We have
identified two conditions that determine whether a model would allow some Burnett-like equations when the
Chapman-Enskog expansion is used. These two conditions are the number of the conserved quantity as well as
the space and time discretization. We shall demonstrate these conditions by dis¢lisginge diffusion
equation and(2) hydrodynamic equations. While the fact that diffusion equation allows the higher-order
dynamics can be shown easily, we will illustrate that care must be taken when deriving Burnett-like equations
for lattice-based hydrodynamics models using the Chapman-Enskog method.

PACS numbgs): 47.11+j, 51.10+y

I. INTRODUCTION with the following evolution equatioh12]:

Compared to traditional methods in computational fluid fi(X+C t+1)=f(X,t) + o[ fT{X, D) - fi(X,t)], (D)
dynamics(CFD), the lattice-based models are simple and
easy to implement on computers. The advantages and disagheref; is the average population of particles with velocity
vantages of the original lattice gas automat&A) have ¢ (i=1,2,...B) which belongs to a predetermined finite
been well documentefil—7]. The lattice Boltzmann equa- set andw the relaxation parameter which satisfies @<2.
tion (LBE) was later introduced to remove some of the draw-The local equilibrium populatioi®{(X,t) is chosen a$17]
backs [8-10. A further simplification to the LBE is
achieved using the BGK proceduieBGK) [11-14].

In lattice-based models, it is well established that the XD =wip(X,t), w;=
Navier-Stokes equation can be deduced at low order expan-
sion of Chapman-Enskog expansidrb]. Many authors fur- : . . - .
ther asserted that the Burnett-like equation could be obtainela Is the number OTI.E"’!”'CIES dlfc:trete'veI(I)IC|t|els. .-trh'j. IS a
by performing higher order using Chapman-Enskog expanf_omogrehneous equil _rlu;n p(_)tpuglontlrgj at vg ?.C' yd blrec-
sion[4,6,7]. The motivation of this paper is to carry out these lons. The macroscopic density, denotedzhys defined by
higher-order Chapman-Enskog expansions to investigate B B
whether it is consistent to do so. We will first study the S e (et — eq ¢
lattice-based model for pure diffusion model6,17] and p(x,t)—i;l fi(x 21 . ©
demonstrate that higher-order dynamics is allowed in this
case. We will then point out that the Burnett-like equationsThe weighting factow; satisfies the normalization constraint
could be derived for lattice-based hydrodynamics modelsgiBWizl_ The choice(2) for the equilibrium population,
Attention should be paid, however, when the ClaSSiC\Nhen used together with Eq@_) and (3), will be shown to
Chapman-Enskog expansion is applied because of the nopead to the diffusion equation. We consider models with the
commutative feature of cross derivatives of two time scalesparticle velocity set inD dimension(D=1, 2, and 3. The
these derivatives do not exist in the continuous time an%imp|est models take the Ve|ocity set of 2D elemebtsli-
space while discrete velocity model8]. The number of  rections along axis anB opposite directions. The rest par-
conserved quantities is also critical for the existence ofjcles can also be included.

higher-order equations. We assume a weak deviation from the local equilibrium
74X 1),

@

W~

Il. HIGH-ORDER DYNAMICS: PURE DIFFUSION
_ _ . HO =) + etV R D+ P+, @)
We now consider the lattice BGK models for pure diffu-

sion problems where the only quantity conserved during thyhere ¢ is the appropriate Knudsen number. The space and
redistribution is the total mass. The propagation step is thgme derivatives are expressed in terms of multiple-scale
same as lattice gas models while the collision step is just §5riaples up to the fourth order in time

. ,

redistribution of mass in all possible directions. We star
d,=€d,, (5)
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02420, = e€dy + €20+ 9, + €'y, (6)
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When the total mass is conserved, it follows from E(3,
(2), (3), and(4) that

> =0, j>0,

=1

()

Using the classic Chapman-Enskog expansion and taking§
into account of the discreteness of lattice model, we obtain 1k

the first-order equation i,

Oy, p= 0. (8
The second-order equation is
c? (2
I~ 55 | 571/ daal=0. 9

Equations8) and(9), i.e., the dynamical equations from the
two separated time scalessHnd 1£2, are now reconstituted

to obtain the macrodynamical equations for the model. The

equation of diffusion equation is obtained from E(®.and

9

atp: KZ&aap! (10)

where the diffusivityx, is given by
= < (2 1 11
“2“30 |w 1) (1D
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FIG. 1. The dispersion relatiofup to fourth order «/ «, versus
k for the D3Q6 model. The open triangles, solid triangles, open
squares, solid squares, and open circles are numerical simulations
corresponding t@=0.75, 1.0, 1.25, 1.5, and 1.75, respectively. The
critical valuew,, is 1.0 for this model.

K K4
—=1+—Kk?
K2 K2

(18

We can also obtain higher-order equations by carrying thevhere x,=A;+ A, and k= Q/K>.
Chapman-Enskog expansion further. We derive the third- Numerical results for the three-dimensional six-velocity

order equation

3t3p= 0 (12)
and the fourth-order equation
at4p: _Alaaaﬁﬁp_A20aaaapr (13)

The coefficientsA;, A,, andk, in Eq. (10) for models in-

cluding rest particles are obtained after some algebraic cal-

culations,
< (2 1 14
Ko E Z_ ’ ( )
(2 2 1
A=pg 2 5zl k2 (15)
A,=c? ! + t 1 16
2=C% — 3t 5| K2 (16)
The final fourth-order equation is the followird7]:
atp: KZaaap_ Al&aaﬁﬁp_ Az&aaaap' (17)

We note that Eq(17) is anisotropic due to the last term.
Applying the Fourier transform exp(Qt—ikx) (k is the
wave number and) the frequencyto the above equation in

model (D3Q6) is given by Fig. 1. The curves correspond to
theoretical resultsc/k, while the points correspond to nu-
merical simulations. Satisfactory agreements in all cases are
achieved. The fourth order corrections may have effects in
the regime of large Knudsen numbers, i.e., lakgad small

. Equation(18) is valid only for wave vectors along (or

y,2 axis, so is the critical value.,= 1 for the D3Q6 numeri-

cal model used for Eq1).

Ill. HIGH ORDER DYNAMICS: HYDRODYNAMICS

We now turn our attention to lattice-based hydrodynamics
models. In the LGA, LBE, and LBGK models, both the mass
and momentum are conserved. The common features in these
models are discrete velocity space of particles, evolution
steps of local interactions and neighbor-to-neighbor propaga-
tion of moving particles. Since the principle of deriving
large-scale equations is the same and outlined in the previous
section. For the sake of simplicity, we use lattice BGK mod-
els to illustrate the existence of high order dynamics:
Burnett-like equations. In classic kinetic theory, Euler,
Navier-Stokes, Burnett, and Super-Burnett equations consti-
tute the successive approximations of the Boltzmann equa-
tion in the order of Knudsen number. As in classic kinetic
theory, the lattice-based models for hydrodynamics use the
Chapman-Enskog expansion in order to derive the Navier-
Stokes equations. We outline the basic ingredients of the
derivation. The time evolution equation is the same as Sec.

one-dimensional space, we get the dispersion relation whicH, except that the equilibrium distributiof®® contains not

reads

only mass, but also momentum,
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2
Cs 2cg

(19

where cg is a constant. The density and velocityd are
defined by

B B B B
D fi=2 f%=p, X Gfi=2 Gff%=pi (20
=1 =1 i=1 i=1

which leads to the constraints on high order correctiijHs

B B
iZ}lfp’):o, Zleiw:o, j>0. (21)

The leading order o yields the inviscid fluid equations

atlp+(9a(pua):0! (22)

5ti(Pua)+(9/3(Puauﬁ):_Cg&apy (23
and the second-ordef results in the dissipative terms

&tzp = 01 (24)

atz(pua)zV[(})Bﬁ(pua)+(9aﬂ(puﬁ)]v (25)

wherev is the shear viscositlyr= cﬁ(llw— 1/2)].

Now in order to obtain high-order hydrodynamical equa-
tions of the lattice-based models, let us look at the third-
ordere®. The Taylor expansion gives the following equation:

1
2 2 1
O {7 Ciad o817+ 0 £124 00 F1Y 4 5 (e, + de,
eq, - (1
+2Ciaat2a)fi + E (atlt1+ zcia&tla—i_ciaciﬁaaﬁ)fi

1
s (1,1, T 3Ci 40t 1,0 3CiaCigdt ap

+Ciaciﬁci7r9a,37)f$q=—wfi(s). (26)

Summing the underlined cross derivativg,,fi® in the
above equation ovér we get a term,

atltz(p)-

Using the first- and second-order equatid@®)—(25), we
obtain two different results.

(1) If we first take the derivative ovdp thent,, we have

ﬁtztl(P) =0.
(2) Reversely, we have
1, (P) = —v3,[dpp(pUs) + dap(pUp)].
It means that the operators are not commutative,
dr () # Dy ()

where--- is eitherp or pu,,.
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FIG. 2. The dispersion relatiofup to third order. the sound
speedC, versus wave numbeefor the D1Q5 modeld, O, and X
are numerical simulations corresponding#e0.75, 1.00, and 1.50
while the curves are theoretical predictions with linearized Egs.
(29),(30).

The third order macroscopic equations can be also ob-
tained by the wave vector expansi@ee, for example, van
Coervordenet al. [19]). Even though the above-mentioned
operators are not commutative, the essential point in( ).
is the sum of the two terms. After a tedious algebraic calcu-
lation, we get the third-order equations

2

c
O p="g Papp(PUa), (27)
cdl12 12
dr,(pUa) = AP, +1dapp(p)- (28
The final equations are the following:
2
CS
atp+&a(pua): E aaﬁﬁ(pua)l (29)

d(pUy) +dg(puglp)=— Cedap+ v[dpp(pUs) +dap(pUp)]

12 12

cd
———
w w

+ 5 (30

Fapp(P)-

The linear dispersion relation can be obtained by neglecting
the nonlinear term in Eq(30) and using Fourier analysis
e'(2=k) We can define the sound speedGs= Re(Q)/k.

We check the dispersion relation numerically. Figure 2
shows the results, curves are theoretical predictions with lin-
earized EQgs(29),(30) and points numerical simulations for
the one-dimensional five-velocity moddD1Q5. Good
agreement is obtained. It could be interesting to investigate
the behaviors of dissipation-dispersion such as the traveling
wave solution of the mixed Burgers-KdV equatiof0].
Even higher-orde(fourth and up dynamics can be obtained
while tremendous care has to be taken since more noncom-
mutative operators are involved and results will be published
elsewhere.

IV. CONCLUDING REMARKS

In this paper, we pointed out that two conditions deter-
mine whether the lattice-based models could or could not
have higher-order dynamics when classical Chapman-
Enskog expansion is used. These conditions are number of
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conservation laws and the space and time discretization. Themple is simulations of the micro-electronic mechanical sys-
pure diffusion model, a system with only one conservedems(MEMS) [21,22.

quantity, is first presented to illustrate that the higher order
dynamics is allowed. We then turned our attention to the
lattice-based hydrodynamics equations. After noting the fea-
ture of no-commutative cross time derivative, we demon- The work of the second author was supported in part by
strate how Burnett-like equations could be obtained folNASA while he was in residence in ICASE. Our special

lattice-based hydrodynamics models using the classithanks goes to Dr. S. Y. Chen of CNLS at Los Alamos
Chapman-Enskog expansion method. The results reported Mational Laboratory. Part of the work was accomplished dur-
this paper can be used to analyze theoretically systems wheirg a visit of Y.H.Q. at the Hong Kong University of Science

hydrodynamic description may break down. A typical ex-and Technology.
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