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Higher-order dynamics in lattice-based models using the Chapman-Enskog method
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In this paper, we investigate the existence of higher-order dynamics in lattice-based models. We have
identified two conditions that determine whether a model would allow some Burnett-like equations when the
Chapman-Enskog expansion is used. These two conditions are the number of the conserved quantity as well as
the space and time discretization. We shall demonstrate these conditions by discussing~1! pure diffusion
equation and~2! hydrodynamic equations. While the fact that diffusion equation allows the higher-order
dynamics can be shown easily, we will illustrate that care must be taken when deriving Burnett-like equations
for lattice-based hydrodynamics models using the Chapman-Enskog method.

PACS number~s!: 47.11.1j, 51.10.1y
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I. INTRODUCTION

Compared to traditional methods in computational flu
dynamics~CFD!, the lattice-based models are simple a
easy to implement on computers. The advantages and d
vantages of the original lattice gas automata~LGA! have
been well documented@1–7#. The lattice Boltzmann equa
tion ~LBE! was later introduced to remove some of the dra
backs @8–10#. A further simplification to the LBE is
achieved using the BGK procedure~LBGK! @11–14#.

In lattice-based models, it is well established that
Navier-Stokes equation can be deduced at low order ex
sion of Chapman-Enskog expansion@15#. Many authors fur-
ther asserted that the Burnett-like equation could be obta
by performing higher order using Chapman-Enskog exp
sion@4,6,7#. The motivation of this paper is to carry out the
higher-order Chapman-Enskog expansions to investig
whether it is consistent to do so. We will first study th
lattice-based model for pure diffusion model@16,17# and
demonstrate that higher-order dynamics is allowed in
case. We will then point out that the Burnett-like equatio
could be derived for lattice-based hydrodynamics mod
Attention should be paid, however, when the clas
Chapman-Enskog expansion is applied because of the
commutative feature of cross derivatives of two time sca
these derivatives do not exist in the continuous time a
space while discrete velocity models@18#. The number of
conserved quantities is also critical for the existence
higher-order equations.

II. HIGH-ORDER DYNAMICS: PURE DIFFUSION

We now consider the lattice BGK models for pure diff
sion problems where the only quantity conserved during
redistribution is the total mass. The propagation step is
same as lattice gas models while the collision step is ju
redistribution of mass in all possible directions. We st
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with the following evolution equation@12#:

f i~xW1cW i ,t11!5 f i~xW ,t !1v@ f i
eq~xW ,t !2 f i~xW ,t !#, ~1!

where f i is the average population of particles with veloci
cW i ( i 51,2, . . . ,B) which belongs to a predetermined fini
set andv the relaxation parameter which satisfies 0<v<2.
The local equilibrium populationf i

eq(xW ,t) is chosen as@17#

f i
eq~xW ,t !5wir~xW ,t !, wi5

1

B
~2!

B is the number of particles’ discrete velocities. This is
homogeneous equilibrium population in all velocity dire
tions. The macroscopic density, denoted byr, is defined by

r~xW ,t !5(
i 51

B

f i~xW ,t !5(
i 51

B

f i
eq~xW ,t !. ~3!

The weighting factorwi satisfies the normalization constrai
S i

Bwi51. The choice~2! for the equilibrium population,
when used together with Eqs.~1! and ~3!, will be shown to
lead to the diffusion equation. We consider models with
particle velocity set inD dimension~D51, 2, and 3!. The
simplest models take the velocity set of 2D elements:D di-
rections along axis andD opposite directions. The rest pa
ticles can also be included.

We assume a weak deviation from the local equilibriu
f i

eq(xW ,t),

f i~xW ,t !5 f i
eq~xW ,t !1e f i

~1!~xW ,t !1e2f i
~2!~xW ,t !1¯ , ~4!

wheree is the appropriate Knudsen number. The space
time derivatives are expressed in terms of multiple-sc
variables up to the fourth order in time,

]a5e]a , ~5!

] t5e] t1
1e2] t2

1e3] t3
1e4] t4

, ~6!
A
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When the total mass is conserved, it follows from Eqs.~1!,
~2!, ~3!, and~4! that

(
i 51

B

f i
~ j !50, j .0, ~7!

Using the classic Chapman-Enskog expansion and ta
into account of the discreteness of lattice model, we ob
the first-order equation ine,

] t1
r50. ~8!

The second-order equation is

] t2
r2

c2

2D S 2

v
21D ]aar50. ~9!

Equations~8! and~9!, i.e., the dynamical equations from th
two separated time scales 1/e and 1/e2, are now reconstituted
to obtain the macrodynamical equations for the model. T
equation of diffusion equation is obtained from Eqs.~8! and
~9!

] tr5k2]aar, ~10!

where the diffusivityk2 is given by

k25
c2

2D S 2

v
21D . ~11!

We can also obtain higher-order equations by carrying
Chapman-Enskog expansion further. We derive the th
order equation

] t3
r50 ~12!

and the fourth-order equation

] t4
r52A1]aabbr2A2]aaaar, ~13!

The coefficientsA1 , A2 , andk2 in Eq. ~10! for models in-
cluding rest particles are obtained after some algebraic
culations,

k25
c2

2D S 2

v
21D , ~14!

A15
c2

D S 2

v22
2

v
1

1

4Dk2 , ~15!

A25c2S 2
1

v2 1
1

v
2

1

12Dk2 . ~16!

The final fourth-order equation is the following@17#:

] tr5k2]aar2A1]aabbr2A2]aaaar. ~17!

We note that Eq.~17! is anisotropic due to the last term
Applying the Fourier transform exp(2Vt2ikx) ~k is the
wave number andV the frequency! to the above equation in
one-dimensional space, we get the dispersion relation w
reads
g
in

e

e
-

l-

ch

k

k2
511

k4

k2
k2, ~18!

wherek45A11A2 andk5V/k2.
Numerical results for the three-dimensional six-veloc

model ~D3Q6! is given by Fig. 1. The curves correspond
theoretical resultsk/k2 while the points correspond to nu
merical simulations. Satisfactory agreements in all cases
achieved. The fourth order corrections may have effects
the regime of large Knudsen numbers, i.e., largek and small
v. Equation~18! is valid only for wave vectors alongx ~or
y,z! axis, so is the critical valuevcr51 for the D3Q6 numeri-
cal model used for Eq.~1!.

III. HIGH ORDER DYNAMICS: HYDRODYNAMICS

We now turn our attention to lattice-based hydrodynam
models. In the LGA, LBE, and LBGK models, both the ma
and momentum are conserved. The common features in t
models are discrete velocity space of particles, evolut
steps of local interactions and neighbor-to-neighbor propa
tion of moving particles. Since the principle of derivin
large-scale equations is the same and outlined in the prev
section. For the sake of simplicity, we use lattice BGK mo
els to illustrate the existence of high order dynami
Burnett-like equations. In classic kinetic theory, Eule
Navier-Stokes, Burnett, and Super-Burnett equations con
tute the successive approximations of the Boltzmann eq
tion in the order of Knudsen number. As in classic kine
theory, the lattice-based models for hydrodynamics use
Chapman-Enskog expansion in order to derive the Nav
Stokes equations. We outline the basic ingredients of
derivation. The time evolution equation is the same as S
II, except that the equilibrium distributionf i

eq contains not
only mass, but also momentum,

FIG. 1. The dispersion relation~up to fourth order! k/k2 versus
k for the D3Q6 model. The open triangles, solid triangles, op
squares, solid squares, and open circles are numerical simula
corresponding tov50.75, 1.0, 1.25, 1.5, and 1.75, respectively. T
critical valuevcr is 1.0 for this model.
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f i
eq5tprF11

ciaua

cs
2 1

~ciacib2cs
2dab!uaub

2cs
4 G , ~19!

where cs is a constant. The densityr and velocityuW are
defined by

(
i 51

B

f i5(
i 51

B

f i
eq5r, (

i 51

B

cW i f i5(
i 51

B

cW i f i
eq5ruW ~20!

which leads to the constraints on high order correctionsf i
( j ) ,

(
i 51

B

f i
~ j !50, (

i 51

B

cW i f i
~ j !50, j .0. ~21!

The leading order one yields the inviscid fluid equations

] t1
r1]a~rua!50, ~22!

] t i
~rua!1]b~ruaub!52cs

2]ar, ~23!

and the second-ordere2 results in the dissipative terms

] t2
r50, ~24!

] t2
~rua!5n@]bb~rua!1]ab~rub!#, ~25!

wheren is the shear viscosity@n5cs
2(1/v21/2)#.

Now in order to obtain high-order hydrodynamical equ
tions of the lattice-based models, let us look at the thi
ordere3. The Taylor expansion gives the following equatio

] t3
f i

eq1cia]a f i
~2!1] t1

f i
~2!1] t2

f i
~1!1

1

2
~] t1t2

1] t2t1

12cia] t2a! f i
eq1

1

2
~] t1t1

12cia] t1a1ciacib]ab! f i
~1!

1
1

6
~] t1t1t1

13cia] t1t1a13ciacib] t1ab

1ciacibcig]abg! f i
eq52v f i

~3! . ~26!

Summing the underlined cross derivative] t1t2
f i

eq in the
above equation overi, we get a term,

] t1t2
~r!.

Using the first- and second-order equations~22!–~25!, we
obtain two different results.

~1! If we first take the derivative overt2 thent1 , we have

] t2t1
~r!50.

~2! Reversely, we have

] t1t2
~r!52n]a@]bb~rua!1]ab~rub!#.

It means that the operators are not commutative,

] t1t2
~¯ !Þ] t2t1

~¯ !

where¯ is eitherr or rua .
-
-

:

The third order macroscopic equations can be also
tained by the wave vector expansion~see, for example, van
Coervordenet al. @19#!. Even though the above-mentione
operators are not commutative, the essential point in Eq.~26!
is the sum of the two terms. After a tedious algebraic cal
lation, we get the third-order equations

] t3
r5

cs
2

6
]abb~rua!, ~27!

] t3
~rua!5

cs
4

6 S 12

v22
12

v
11D ]abb~r!. ~28!

The final equations are the following:

] tr1]a~rua!5
cs

2

6
]abb~rua!, ~29!

] t~rua!1]b~ruaub!52cs
2]ar1n@]bb~rua!1]ab~rub!#

1
cs

4

6 S 12

v22
12

v
11D ]abb~r!. ~30!

The linear dispersion relation can be obtained by neglec
the nonlinear term in Eq.~30! and using Fourier analysi
ei (Vt2kx). We can define the sound speed asCs5Re(V)/k.

We check the dispersion relation numerically. Figure
shows the results, curves are theoretical predictions with
earized Eqs.~29!,~30! and points numerical simulations fo
the one-dimensional five-velocity model~D1Q5!. Good
agreement is obtained. It could be interesting to investig
the behaviors of dissipation-dispersion such as the trave
wave solution of the mixed Burgers-KdV equations@20#.
Even higher-order~fourth and up! dynamics can be obtaine
while tremendous care has to be taken since more nonc
mutative operators are involved and results will be publish
elsewhere.

IV. CONCLUDING REMARKS

In this paper, we pointed out that two conditions det
mine whether the lattice-based models could or could
have higher-order dynamics when classical Chapm
Enskog expansion is used. These conditions are numbe

FIG. 2. The dispersion relation~up to third order!: the sound
speedCs versus wave numberk for the D1Q5 model.h, s, and3
are numerical simulations corresponding tov50.75, 1.00, and 1.50
while the curves are theoretical predictions with linearized E
~29!,~30!.
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conservation laws and the space and time discretization.
pure diffusion model, a system with only one conserv
quantity, is first presented to illustrate that the higher or
dynamics is allowed. We then turned our attention to
lattice-based hydrodynamics equations. After noting the f
ture of no-commutative cross time derivative, we demo
strate how Burnett-like equations could be obtained
lattice-based hydrodynamics models using the cla
Chapman-Enskog expansion method. The results reporte
this paper can be used to analyze theoretically systems w
hydrodynamic description may break down. A typical e
.
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he
d
r

e
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-
r
ic
in
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-

ample is simulations of the micro-electronic mechanical s
tems~MEMS! @21,22#.
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